

Por Alan Rômulo Queiroz, Eduardo César Senger e Luciene Queiroz*

Capítulo X

Hierarquização dos ativos e criticidade dos equipamentos

EXEMPLO DE HIERARQUIZAÇÃO DOS ATIVOS

Para hierarquização dos ativos (equipamentos), a primeira etapa é estabelecer os limites entre as fronteiras de cada sistema de acordo com a sua função. A Figura 1 apresenta um exemplo de sistema elétrico e as fronteiras entre os sistemas, a saber:

- Tracejado rosa: sistema de geração principal;
- Principais equipamentos: turbinas a gás e geradores elétricos;
- Tracejado amarelo: sistema de distribuição principal;
 Principais equipamentos: painel elétrico, disjuntores, relés de proteção e transformadores de distribuição;
- Tracejado roxo: sistema de distribuição normal;
- Principais equipamentos: painéis elétricos, disjuntores, relés de proteção e transformadores de distribuição;
- Tracejado marrom: sistema de geração de emergência;
- Principais equipamentos: motor diesel e gerador elétrico;
- Tracejado laranja: sistema de distribuição essencial;

Principais equipamentos: painéis elétricos, disjuntores e relés de proteção; • Tracejado azul: sistema de geração auxiliar;

Principais equipamentos: motor diesel e gerador elétrico;

• Tracejado cinza: sistema de corrente

contínua e UPS;

Principais equipamentos: retificadores, bancos de baterias e UPS;

 Tracejado vermelho: sistema de distribuição de emergência;

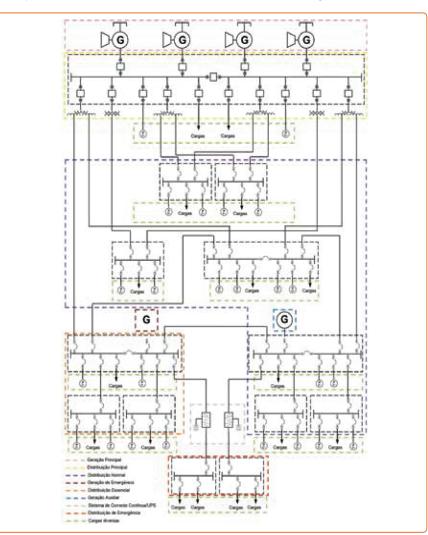


Figura 1 – Exemplo de diagrama unifilar e suas fronteiras.

NOVEMP

Principais equipamentos: painéis elétricos;

• Tracejado verde: cargas diversas;

Principais equipamentos: aquecedores e motores elétricos de diversos equipamentos, tais como ventiladores, bombas, compressores, entre outros. A fronteira dos sistemas para esses equipamentos é definida de acordo com os sistemas de processo.

Uma vez definidas as fronteiras para os sistemas, deve-se realizar a hierarquização dos equipamentos pertencentes a eles. Como exemplo, será realizada a hierarquização do sistema de distribuição principal, composto principalmente por um painel de distribuição que recebe alimentação dos turbogeradores. Esse painel será tagueado como DP PNL-01 (Sistema de Distribuição Principal - Painel 01). A Figura 2 apresenta o diagrama unifilar deste painel.

Os cubículos de entrada possuem o diagrama típico ilustrado na Figura 3.

Para a hierarquização do painel DP PNL-01, além do próprio painel, deverão ser cadastrados como equipamentos os disjuntores e os relés de proteção de cada cubículo, inclusive para atendimento ao item 10.4.4 da NR 10. Dessa forma, a hierarquia proposta para o painel DP PNL-01, considerando apenas o cubículo de entrada 01, onde está instalado o disjuntor DP DJ -E01, é apresentada na Tabela 1.

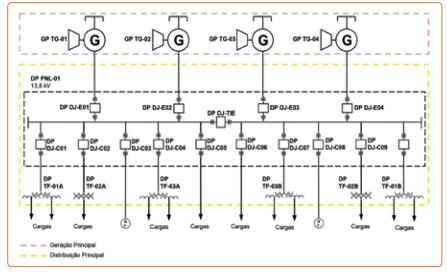


Figura 2 – Diagrama unifilar do sistema de distribuição principal.

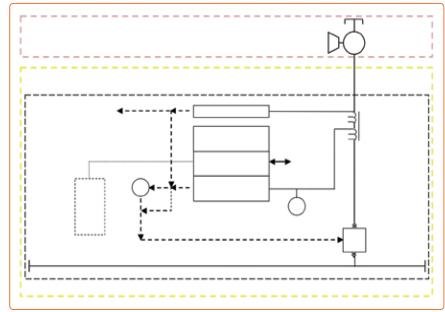


Figura 3 – Diagrama típico do cubículo de entrada.

44

TABELA 1 - MODELO DE HIERARQUIZAÇÃO PARA O PAINEL DP DJ-E01

Principal categoria	Nível taxonômico	Hierarquia Taxonômica				
Dados sobre uso/localização	1	Indústria	Petróleo			
	2	Categoria de Negócios	Upstream			
	3	Categoria da Instalação	Produção de Óleo/Gás			
	4	Categoria da Planta/Unidade	Unidade de Produção			
	5	Seção/Sistema	Sistema de Distribuição Principal			
Subdivisão do equipamento	6	Classe/Unidade de equipamento	DP PNL-01			
	7	Subunidade	Cubículo de Entrada 01			
	8	Componente/Item manutenível	Cubículo			
	9	Parte	Botão comando pulsante, 22,5 mm Preto			
	9	Parte	Chave comutadora 2pos 600V 20A			
	9	Parte	Chave comutadora 3pos 600V 32A			
	9	Parte	Conector aferição 600V			
	9	Parte	Contator pot 4NA AC-3 690V(Ui)			
	9	Parte	Disjuntor miniatura 2P 6A 380Vca			
	9	Parte	Relé bloq 125Vcc 5na+5nf			
	9	Parte	Sinaleiro p/ painel 22,5mm 125Vca AM			
	9	Parte	Sinaleiro p/ painel 22,5mm 125Vca VD			
	9	Parte	Sinaleiro p/ painel 22,5mm 125Vca VM			
	9	Parte	TC barra 1500 -5A			
	9	Parte	TC janela 50 -5A			
	9	Parte	TP 13800-120V 0,3P50			
	8	Componente/Item manutenível	DP DJ-E01			
	9	Parte	Bobina de abertura			
	9	Parte	Bobina de fechamento			
	9	Parte	Motor de carregamento de mola			
	9	Parte	Bloco auxiliar			
	9	Parte	Plugue de comando			
	8	Componente/Item manutenível	Relé de Proteção DJ-E01			
	9	Parte	Relé de Proteção Fabricante X, Modelo X			

CRITICIDADE DOS EQUIPAMENTOS

Uma vez definida a hierarquia dos equipamentos, necessário definir

a criticidade dos equipamentos. A classificação adequada da criticidade permite uma melhor eficácia na escolha do tipo de manutenção (corretiva, preventiva ou preditiva) que determinado equipamento será submetido e otimizar a

TABELA 2 - CRITÉRIOS CONSIDERADOS PARA CÁLCULO DA CRITICIDADE

Item	Critério	Definição				
A	Segurança das pessoas e do meio ambiente	O foco é avaliar as consequências que a falha do equipamento pode				
		ocasionar sobre as pessoas e seu impacto sobre o ambiente.				
В	Custos da parada de produção	Permite estabelecer critérios para categorização dos equipamentos conforme				
		as consequências sobre o processo de produção e satisfação da demanda.				
С	Fator de velocidade de manifestação da falha –	É o tempo que pode transcorrer entre o momento em que se detecta uma falha				
	Período P-F	em potencial e o momento em que esta se transforma em falha funcional.				
D	Custos de reparação	Determinar critérios de classificação das falhas de acordo				
		com os custos diretos de reparação.				
Е	Origem	Nacional ou importado.				
F	Nível de redundância	Equipamento com capacidade limitada ou sem redundância.				
G	Mão de obra	Manutenção realizada por pessoal próprio ou por terceiro.				
Н	Idade do equipamento	Idade dos equipamentos: após dez anos as empresas podem fazer				
		descontinuidade de fabricação de peças.				

46

aplicação dos recursos humanos e gestão dos custos.

Em geral, cada empresa possui a sua metodologia própria para definição da criticidade de equipamentos. Neste trabalho foram estabelecidos oito critérios de avaliação para a definição dos critérios para cálculo da criticidade dos equipamentos. A Tabela 2 resume os critérios considerados na modelagem e suas definições.

Com os critérios definidos, o grau de importância de cada um deles foi determinado aplicando-se a avaliação numérica de relações funcionais de Mudge. O Método de Mudge consiste em hierarquizar os critérios por ordem de importância e deve ser usado quando estiverem relacionados mais de seis critérios, comparando-os aos pares.

A técnica inicia-se relacionando o critério "A" com o critério "B" e determinando-se qual é o mais importante. A letra-chave do critério escolhido como mais importante é colocada na parte superior esquerda do quadro "AB". A diferença na importância dos critérios é expressa pelo fator 1, 3 ou 5 de acordo com os pesos:

- 5 Critério muito mais importante que o critério precedente;
- 3 Critério moderadamente mais importante que o critério precedente;
- 1 Critério com pouca importância a mais que o critério precedente.

Após o critério "A" ter sido comparado e avaliado com o critério "B" e a letrachave da função mais importante e o seu fator-peso anotados no quadro, repete-se o procedimento para a comparação "AC", "AD", seguindo até o último critério. Posteriormente, analisa-se a linha subsequente e compara-se "BC", "BD", seguindo, também, até comparar todos os critérios.

Esse processo de comparação e avaliação deve ser realizado até que todos os critérios tenham sido individualmente

Tabela 3 – Exemplo de aplicação do critério de Mudge

comparados e avaliados com todos os outros critérios relacionados. A avaliação será completada somando-se os fatorespeso para cada critério e colocando-se o total na coluna de peso de cada critério.

Dividindo-se o fator peso de cada critério pelo somatório do fator peso de todos os critérios, tem-se o percentual de importância para cada critério. A Tabela 3 demonstra um exemplo da aplicação do critério de Mudge.

Dessa forma, a matriz de decisão apresentada na Tabela 4 foi elaborada para determinar o grau de importância de cada critério.

Observa-se, na Tabela 4, que o critério A (Segurança das pessoas e do meio ambiente) obteve o maior valor de grau de importância (25%) para a avaliação da criticidade de um equipamento e os critérios E (Origem) e G (Mão de obra) obtiveram o menor valor (1,56%). O valor percentual obtido para cada critério é divisão da soma de pesos que o mesmo obteve na avaliação pela soma dos pesos obtidos por todos os critérios.

A Tabela 5 apresenta, em ordem decrescente, a importância de cada critério avaliado na Tabela 4.

TABELA 4 - MATRIZ PARA HIERARQUIZAÇÃO DOS CRITÉRIOS DE CRITICIDADE

		В	Peso	С	Peso	D	Peso	Е	Peso	F	Peso	G	Peso	н	Peso	Soma	%
	Α	Α	1	Α	5	Α	1	Α	3	F	3	Α	5	Α	1	16	25,00%
		В		В	3	В	1	В	3	В	1	В	3	В	3	14	21,88%
	C D 1 C 3 C 3 C 1 C 1								8	12,50%							
						D		D	3	D	3	D	1	D	3	11	17,18%
	E E 1 G 1 H 3							1	1,56%								
	F F 3 F 1								7	10,94%							
	G H 3								1	1,56%							
н								6	9,38%								
									64	100,00%							

TABELA 5 - IMPORTÂNCIA DOS CRITÉRIOS AVALIADOS

Item	Critério	Grau de Importância
A	Segurança das pessoas e do meio ambiente	25,00%
В	Custos da parada de produção	21,88%
D	Custos de reparação	17,18%
С	Fator de velocidade de manifestação da falha – Período P-F	12,50%
F	Nível de redundância	10,94%
Н	Idade do equipamento	9,38%
Е	Origem	1,56%
G	Mão de obra	1,56%

Tabela 6 – Peso das condições para os critérios de criticidade dos equipamentos

Item	Critério	Condição do critério de criticidade	Peso da condição				
		- Sem potencial para lesões;					
		- Sem efeito em sistemas de segurança;	0,00				
		- Sem potencial para incêndio;					
		- Sem potencial para poluição ambiental.					
		- Potencial para lesões que requerem tratamento médico;					
		- Efeito limitado em sistemas de segurança;	0,50				
A	Segurança das pessoas e do meio ambiente	- Sem potencial para incêndio em área classificada;					
		- Potencial para poluição ambiental moderada.					
		- Potencial para sérias lesões;					
		 Indisponibilidade de sistemas críticos de segurança; 	1,00				
		- Potencial para incêndio em área classificada;					
		- Potencial para ampla poluição ambiental.					
		Custo insignificante, inferior a Z (limite especificado pela empresa).	0,00				
В	Custos da parada de produção	Custo moderado, entre Z e Y reais (limites especificados pela empresa).	0,50				
		Custo significativo, superior a Y reais (limite especificado pela empresa).	1,00				
С	Fator de velocidade de manifestação da	Suficiente, possível programar a intervenção.	0,00				
	falha – Período P-F	Curto, possível parar o equipamento.	0,50				
		Muito curto, sem possibilidade para parar o equipamento.	1,00				
		Até 25% do valor do equipamento.	0,00				
D	Custos de reparação	Entre 25% e 80% do valor do equipamento.	0,50				
		Maior que 80% do valor do equipamento.	1,00				
Е	Origem	Nacional	0,50				
		Importado	1,00				
		Equipamento possui redundância.	0,00				
F	Nível de redundância	Equipamento não possui redundância, porém possui equipamento reserva.	0,50				
		Equipamento não possui redundância e equipamento reserva.	1,00				
G	Mão de obra	Própria.	0,50				
		Terceirizada.	1,00				
		Menor que 5 anos.	0,00				
Н	Idade do equipamento	Entre 5 e 15 anos.	0,50				
		Maior que 15 anos.	1,00				

Uma vez definida a importância de cada critério, foram definidos os seus pesos.

- Critério com dois estados pesos 0,5 e 1,0;
- Critério com três estados pesos 0,0; 0,5 e 1,0.

Para o cálculo da criticidade quantitativa de um equipamento, deve-se avaliar o impacto desse equipamento segundo cada um dos oito critérios propostos. O produto do peso

do impacto pelo grau de importância do critério é o valor da criticidade do equipamento no critério avaliado. A soma das criticidades parciais é o valor da criticidade quantitativa do equipamento. A Tabela 6 apresenta os valores numéricos propostos neste trabalho para implementar este procedimento.

Quanto ao critério B (custos da parada de produção), a norma NORSOK Z-008 sugere que cada empresa determine os seus gatilhos de perda.

O valor qualitativo da criticidade é obtido fazendo a comparação do valor obtido para o quantitativo da criticidade com a faixa de valores definida. Este trabalho propõe ainda que os equipamentos críticos de segurança operacional, definidos como salvaguardas nos estudos de risco ou que se enquadram como equipamentos pertencentes a sistemas críticos de segurança operacional, sejam classificados com o maior valor de criticidade, visto a importância deles para a segurança da unidade. Neste caso, a análise é prescritiva, ou seja, uma vez identificado um equipamento de 48

Manutenção de equipamentos elétricos

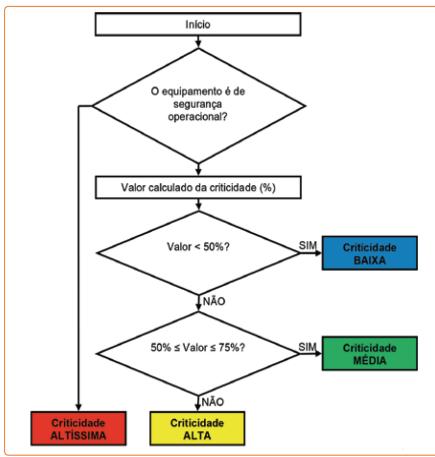


Figura 4 – Algoritmo para obtenção do valor qualitativo da criticidade dos equipamentos.

segurança operacional, não é necessário realizar 0 procedimento descrito neste item para cálculo da criticidade, considerando que deve ser atribuído diretamente o maior valor de criticidade estabelecido.

Dessa forma, a criticidade qualitativa do equipamento será determinada, partir do valor da criticidade quantitativa, pelo procedimento mostrado no diagrama da Figura 4.

REFERÊNCIAS

- Basso, J. L. "Engenharia e análise do valor". Instituto IMAM. São Paulo, 1991. 193 p.
- Belmonte, D. L.; Scandelari, L.; Marçal, R.F.M.; Kovaleski, J. L.. "Gestão da manutenção auxiliada pela gestão do conhecimento". XXV Encontro Nacional de Engenharia de Produção (ENEGEP). Porto Alegre, 2005.
- Csillag, J.M. "Análise do valor". 4ª

Edição. Editora Atlas. São Paulo, 1995. 370p.

- Fabro, E. "Modelo para planejamento de manutenção baseado em Indicadores de criticidade de processo". Dissertação (Mestrado em Engenharia de Produção). Universidade Federal de Santa Catarina. Florianópolis, 2003.
- Fuentes, F. F. E. "Metodologia para inovação da gestão de manutenção industrial". Tese (Doutorado em Engenharia Mecânica). Universidade Federal de Santa Catarina. Florianópolis, 2006.
- Furmann, J. C. "Desenvolvimento de um modelo para melhoria do processo de manutenção mediante a análise de desempenho de equipamentos". Dissertação (Mestrado em Engenharia de Produção). Universidade Federal de Santa Catarina. Florianópolis, 2002.
- Macedo, M. A. S. "Contribuição Metodológica para a determinação da criticidade de equipamentos na gestão

da manutenção". Dissertação (Mestrado em Engenharia de Produção). Universidade Tecnológica Federal do Paraná. Ponta Grossa, 2005.

- Ministério do Trabalho e Emprego. "Norma Regulamentadora n.10 (NR-10)", Segurança em instalações e serviços em eletricidade. Brasília, 2004.
- NORSOK Z-008. "Criticality analysis for maintenance purposes". Noruega, 2001.
- Pereira Filho, R. R. "Análise do valor -Processo de melhoria contínua". Editora Nobel. São Paulo, 1994. 186p.
- Queiroz, A. R. S. Estratégia de manutenção de equipamentos elétricos em unidades offshore de produção de petróleo e gás baseada na filosofia de operações integradas. Tese (Doutorado em Ciências - Engenharia Elétrica). Universidade de São Paulo, 2016.
- Sellitto, M. A.; Walter, C. "Medição e pré controle do desempenho de um plano de ações estratégicas em manufatura". Revista Gestão e Produção, v.12, p. 443-458, 2005.

*ALAN RÔMULO SILVA QUEIROZ é engenheiro eletricista graduado pela Universidade Santa Cecília (Santos - SP), mestre e doutor em Engenharia Elétrica pela Escola Politécnica da Universidade de São Paulo.

EDUARDO CÉSAR SENGER é engenheiro eletricista e doutor pela Escola Politécnica da Universidade de São Paulo. É professor livre-docente na área de Proteção de Sistemas Elétricos pela Universidade de São Paulo e coordenador do Laboratório de Pesquisa em Proteção de Sistemas Elétricos (Lprot).

LUCIENE COELHO LOPEZ QUEIROZ é bacharel em Ciências da Computação graduada pela Universidade Católica de Santos e mestre em Engenharia da Computação pela Escola Politécnica da Universidade de São

CONTINUA NA PRÓXIMA EDIÇÃO

Acompanhe todos os artigos deste fascículo em www.osetoreletrico.com.br Dúvidas, sugestões e outros comentários podem ser encaminhados para redacao@atitudeeditorial.com.br